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Interactive On-Surface Signal Deformation
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Figure 1: Our framework allows artists to interactively edit (a) shadows, (b) caustics, (c) reflections, and (d) 3D-textures with on-surface
deformations (7 fps and 11K deformation points). The user sets deformation constraints and the system interactively updates the rendering.

Abstract

We present an interactive system for the artistic control of visual
phenomena visible on surfaces. Our method allows the user to intu-
itively reposition shadows, caustics, and indirect illumination using
a simple click-and-drag user interface working directly on surfaces.
In contrast to previous approaches, the positions of the lights or
objects in the scene remain unchanged, enabling localized edits of
individual shading components. Our method facilitates the edit-
ing by computing a mapping from one surface location to another.
Based on this mapping, we can not only edit shadows, caustics, and
indirect illumination but also other surface properties, such as color
or texture, in a unified way. This is achieved using an intuitive user-
interface that allows the user to specify position constraints with
drag-and-drop or sketching operations directly on the surface. Our
approach requires no explicit surface parametrization and handles
scenes with arbitrary topology. We demonstrate the applicability of
the approach to interactive editing of shadows, reflections, refrac-
tions, textures, caustics, and diffuse indirect light. The effectiveness
of the system to achieve an artistic goal is evaluated by a user study.

Keywords: intuitive editing, deformation, shadows, light design,
texture, real-time rendering, graphics hardware

1 Introduction

With the advance of efficient rendering techniques and powerful
graphics hardware, tools that enable the modification of computer-
generated 3D scenes with immediate visual feedback are now avail-
able to artists [Pellacini et al. 2002; Ragan-Kelley et al. 2007; Obert
et al. 2008]. Many of these techniques try to keep the resulting

renderings physically correct; for instance, by repositioning light
sources to cast an artist-defined shadow. However, artists are not
necessarily interested in a physically correct rendering of the scene
but rather want to achieve a certain artistic goal. Thus, they often
revert to generating multiple renderings (2D layers) of the scene,
which are later manipulated, enhanced, and composited in an off-
line process [Birn 2006]. Of course, this approach is limited to sim-
ple 2D manipulations, and complex modifications, such as moving
a shadow onto an adjacent object, are difficult or even impossible
to support.

We propose a system to interactively perform such tweaks, includ-
ing shadows, caustics, reflections, 3D textures, and indirect light-
ing, directly over scene surfaces in one framework. We argue that
the most intuitive way of translating and deforming surface signals
is to imagine them being painted on a piece of “elastic cloth” that
can be dragged over the surface: the user can fix one or more points
of the cloth that should not move, and drag others to move or de-
form the signal. Although this does not result in physically accurate
modifications, it provides artists with the flexibility to modify only
some shading components (e.g., shadows and not caustics) as well
as the possibility to adjust them only locally. While this is a simple
editing paradigm, it is challenging to achieve: the method must
work in a meshless fashion (for instance, to support dragging a
shadow from one object to another); discontinuous deformations
need to be supported, as the user should be able to move a surface-
signal across edges (such as from the floor onto a wall); and finally,
the deformed surface must remain on the original surface, or arti-
facts such as self-shadowing may occur. We propose a novel surface
deformation approach that overcomes these challenges and that of-
fers many desirable properties: it can be computed in real-time, it
is decoupled from the underlying geometric representation, and it
affords an intuitive editing metaphor.

In summary, this paper makes the following contributions:

• An efficient, interactive, “what you see is what you get” defor-
mation interface of on-surface signals.

• A unified method to deform many different shading compo-
nents, like shadows, caustics, reflections, 3D textures, and in-
direct lighting.

• A meshless, multi-resolution GPU approach to compute on-
surface deformations.
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• A study of user task performance when editing on-surface sig-
nals with our system.

2 Related Work

Editing Light Interfaces for editing of light and shadows have
been researched over the past two decades. Very early on, Poulin
and Fournier [1992] suggested to infer light source positions from
modified highlights and shadow volumes. Several methods have
been proposed to use painting interfaces to infer and adjust light
source intensities and positions [Schoeneman et al. 1993; Poulin
et al. 1997] as well as to derive plausible environment maps [Okabe
et al. 2007]. Direct interfaces, where the user directly modifies light
sources, are probably the most widely used ones, as they are read-
ily available in commercial editing tools, such as Autodesk Maya
or Maxon Cinema 4D. Indirect interfaces exist as well, where the
user is allowed to click-and-drag shadows, which in turn adjusts the
light source [Pellacini et al. 2002]. Kerr and Pellacini [2009] have
studied these different interfaces for lighting design and have found
that painting interfaces are significantly less intuitive than direct or
indirect editing interfaces.

We propose an indirect editing interface for the modification of var-
ious surface signals, including shadows and shading. In contrast to
the methods above, our goal is not to relight the entire scene in
order to match user input. We rather want to give the artist the
flexibility to adjust the location of individual shading components,
such as shadows or indirect illumination. This is more in the spirit
of the work by Barzel [1997] (as used in Toy Story), who proposed
a lighting model to support artist-driven modifications of shadows
and lighting; for instance, this model allowed the user to move shad-
ows independently of shading.

In non-photorealistic rendering, an approach was proposed by
DeCoro et al. [2007] to edit and stylize shadows; e.g., by inflating
or deflating it. Similarly, a method for editing stylized shading has
been demonstrated [Todo et al. 2007].

While editing of direct illumination and shadowing has received
most attention, there is also some work on editing other shading
components. Tabellion and Lamorlette [2004] enable an artist to
change the falloff and hue of indirect illumination through shader
manipulation. The method of Obert et al. [2008] provides means
to modify the indirect light transport in a general manner and they
demonstrate changing the hue, saturation, and falloff. Our goal is
different: we want to enable an artist to modify where indirect il-
lumination appears, which we essentially achieve by mapping it to
different surface locations through an intuitive user interface. Other
modifications are orthogonal to our approach. Recently, Ritschel et
al. [2009] presented an approach for the modification of reflections.
A user can place constraints on the reflection and appropriate mod-
ified reflection directions are inferred. Our approach is similar in
spirit. A user can impose several constraints and the shading com-
ponent is transformed accordingly. In fact, we demonstrate that our
approach can also be used for editing reflections.

Deformation While intuitive deformation of surfaces in 3D space
has received much interest [Zorin et al. 1997; Kobbelt et al. 1998;
Botsch and Kobbelt 2004; Müller et al. 2005; Sumner et al. 2007],
there is little or no work considering the deformation of shapes on
a 3D surface. However, some of the surface deformation methods
are closely related to our work. Sumner et al. [2007] proposed em-
bedded deformations to generate smooth and intuitive deformation
fields. To this end, local deformation “nodes” on the surface are
derived that then follow user-constraints. Consistency across the
shape is ensured by regularization. Actual vertices are deformed
by a linear combination of the deformed nodes. Our approach pro-

ceeds in a similar fashion but without an explicit graph structure
and a different objective function that ensures that the deformation
remains on the surface. Meshless deformations were introduced
by Müller et al. [2005]. Similar to our work, deformations are di-
rectly computed over a point cloud without requiring connectivity
information. However, we support deformations that remain on the
objects’ surfaces.

Deformation over a surface can also be understood as a re-
parametrization of a manifold by another manifold as described in
the work by Schreiner et al. [2004] targeting off-line computation.
Our work differs, since we do not need to match arbitrary surfaces
but are interested in mapping a surface or collection of surfaces
onto themselves under given user constraints. This allows for a
more efficient solution enabling interactive editing.

Similarly, (constrained) mesh parametrization [Lévy and Mallet
1998; Zwicker et al. 2002; Schmidt et al. 2006; Hormann et al.
2007; Tzur and Tal 2009] could be used to derive an appropriate
mapping. However, our goal is to allow users to make edits across
different objects (e. g., a shadow dragged from the floor onto the
adjacent wall). We therefore opt to use a meshless approach, to
which mesh parametrization methods do not apply. A discrete ap-
proximation of the exponential map [Schmidt et al. 2006] can be
used to compute local parametrizations for texture mapping. Our
goal is different: we do not want to texture map an object or scene
from scratch but rather deform existing surface signals.

Our approach also bears some resemblance to deformable shape
matching algorithms [Li et al. 2009], as these try to maintain the
intrinsic metric structure of a surface when matching another sur-
faces [Bronstein et al. 2006].

3 Editing Metaphor and User Interaction

The goal of our work is to enable an artist to easily and intuitively
deform shading components, such as caustics or texture, over the
surface. Common editing operations would include, for instance,
dragging parts of a shadow from one location to another; or mod-
ifying the shape of a caustic to be more visually pleasing. To this
end, we propose to use the metaphor of a virtual piece of cloth that
allows for intuitive deformation of shading components covering
the scene surfaces. We argue that users have a certain expectation
or knowledge how a piece of cloth would behave when deformed
over a surface. Users manipulate this virtual piece of cloth through
constraints and regions of influence. We support simple point con-
straints as well as sketch-based constraints, see Figure 2 for some
examples. More specifically, we support the following types of user
interaction.

Constraints The user can generate a constraint by clicking on a
3D surface at location xc and dragging it to some new location yc,
which can be on the same as well as on a different surface. I.e.,
we want the surface signal to move from xc to yc: xc → yc. On
the first click both constraint points xc and yc are generated at the
surface position under the mouse pointer, i.e., xc = yc in the be-
ginning. Both constraint points are visualized by handles: a red one
for the original surface position xc and a green one for the deformed
surface position yc (see Fig. 2). The user can now drag the green
handle over the surface away from the original position, defining a
new position for yc. Our implementation ensures that yc is always
located on a surface, and is not floating in free space. While the
user drags the constraint, the surface signal is following the mouse
movements exactly. Thus, a single constraint is sufficient to specify
a simple translation over the surface. Using multiple constraints
allows the user to specify more complicated deformations, e.g., op-
erations like rotation and scaling for two constraints, or arbitrary
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Figure 2: Visualization of the on-surface deformation under given user constraints. Thin lines indicate how the surface signal deforms.
(a) An example using two constraints. Note, how the translation of a constraint handle results in a rotational deformation field. (b) Moving
of a single constraint results in a translation. (c) Two opposing constraints in a closed environment lead to a rotational deformation. (d) An
edit on a complex geometry. Note, how the deformation field is smooth nonetheless. (e) A sketch-based edit.

deformations for more constraints. As mention before, we intend
the resulting deformation to behave roughly like a piece of cloth in
order to make it intuitive for the user.

Regions The user can limit the influence of the deformation by
placing a region of influence (defined by a center point and an
Euclidian or geodesic radius). We then automatically generate po-
sitional constraints around the boundary of this region to ensure
continuity. The deformation is only computed within this boundary,
speeding up the computation.

Sketching We also provide a sketching interface to impose con-
straints. The user first sketches a curve (B-Spline) over the unde-
formed surface signal and a second curve, which specifies where
the signal under the first curve should move to, see Figure 2. The
two curves are turned into a set of constraints by sampling both
B-Splines and imposing xcn → ycn for each sampled location n.

Shading Component The user can select which of the shading
components to edit: shadows, reflections, refractions, texture, caus-
tics, and indirect illumination. Note, that we support decoupled
edits; i. e., different edits can be applied to different components.

4 On-surface Deformation

We will now introduce a more rigorous definition of our editing
approach. We assume that the color or shading of a surface, S ⊂ R3,
is given by a function f (x) mapping an arbitrary point, x ∈ R3, to
a color value. When rendering an object, this function is evaluated
for points on the surface, x ∈ S . In the simplest case, this function
represents a 3D texture and returns the color obtained from a vol-
ume texture at x. However, it can also encode global information
about the scene and, for instance, represent a shadow test yielding
f (x) = 0 if the point x is in shadow, and 1 otherwise. Deforming
the surface signal means that we want to observe the result f (x)
at another location y. Given the deformation mapping g(x) = y,
which says that x should move to y (∀x ∈ S), the result at y after
deformation is then f (g−1(y)). Our main challenge is to efficiently
derive the deformation function g(x). Several properties of g(x) are
crucial for on-surface deformation and guide its optimization:

• It has to be editable in an interactive and intuitive fashion, and
follow the artist’s controls similar to a piece of cloth.

• The deformation has to be smooth (to prevent objectionable ar-
tifacts) and invertible.

• The deformation g(x) = y must map points on the surface x ∈ S
to other points on the surface y ∈ S , i.e., g(x) : S → S .

In particular, the last property is of utmost importance for on-
surface deformation and the fundamental difference to previous

approaches performing geometric deformations. Consider the ex-
ample of f (x) being the shadow test: if g(x) : R3 → R3 is an
arbitrary smooth mapping, e.g., bending, that does not map points
on the surface to the surface itself, then it would cause unintended
self-shadowing (see Fig. 3). If the user deforms the shadow on
the surface, or drags it over the surface, we have to ensure that
we replace shadow tests at one surface location by a shadow test
from another location on the surface – and not with shadow tests at
arbitrary points in space.

Light

Occluder

Shadow
Surface

Edit
Deformati on

a.) b.) c.) d.)

Figure 3: An object casts a shadow on a wall (a). A user drags the
shadow up the wall (b). Common surface deformation will result in
self shadows on the ground (c). On-surface deformation will make
the shadow slide over the surface (d).

4.1 Meshless Deformation Representation

The deformation of the shading function f (x) over S is captured
and edited using the aforementioned virtual cloth metaphor. We
will explain the basic algorithm first, which is later extended to a
hierarchical method for improved stability and performance.

First, we compute a uniform distribution of deformation points on
the surfaces of the scene. This initial set of points, denoted as
G = {gi|gi ∈ S ∧ 0 ≤ i < N}, is created using the procedure de-
scribed by Sumner et al. [2007], which ensures that no point has a
neighboring point within a radius r, and thus exhibits good blue
noise properties. These points can later be used to define con-
straints, i. e., the user can fix a point to reside at a certain location,
or drag it to move or stretch the shading function. In order to solve
for the constraints, we use a mass-spring system, similar to cloth
simulations [Ko and Breen 2003]; however, with the additional con-
straint that the points reside on the surface (cf. Sec. 4.2). The initial
locations of the points, gi ∈ G, define the undeformed state. After
the system has been solved for user-imposed constraints, the new
locations of the points are denoted as g̃i ∈ G̃. In contrast to most
other approaches, where the cloth springs are related to a specific
topology of the masses (points), we link every point to its N = 18
nearest neighbors by generating springs with a rest length equal
to the Euclidean distance in the undeformed state. The number
of springs is motivated by the blue noise properties [Balzer et al.
2009]: every point has on average 6 direct neighbors with a dis-
tance of approximately r, and 12 other points with an approximate
distance of 2r (cp. Fig. 4). The springs with the rest length of ap-
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proximately 2r allow us to prevent the virtual cloth from (strong)
shearing and foldovers.

4.2 Deformation Estimation

The desired mapping function g, represented by the deformation
points g̃i, has to satisfy three objectives: Firstly, the mapping g has
to meet the user constraints cn (hard constraint):

g(xcn) = ycn . (1)

Secondly, deformation points in the direct neighborhood N , de-
fined by the Ndist nearest neighbors, should maintain their original
distance. This requirement prevents (strong) shearing and foldovers
and can be translated into an objective function as

Edist(g) = ∑
i

∑
k∈N (i)

||gk − gi||2 − ||g̃k − g̃i||2 . (2)

Thirdly, all deformation points should be located on the surface. By
defining a function S(g̃) that maps a point in space to the respective
closest point on the surface, we can write

Esurf(g) = ∑
i
||g̃i − S(g̃i)||2 . (3)

Thus, a combined objective function is given by:

E(g) = wdist Edist + wsurf Esurf subject to g(xcn) = ycn (4)

We use the weights wdist = 0.3 and wsurf = 1.0, and Ndist = 18 for
all our examples.

This combined objective function E could be optimized with a non-
linear least squares solver (as in Sumner at al. [2007]). However, we
opt to minimize the objective function E using an implicit solver, as
it is very amenable to a GPU implementation. We relax the system
in a simple loop over all deformation points that performs three
steps for each deformation point, one for each objective (similar to
relaxation in cloth simulation [Ko and Breen 2003]), which yields
the deformed points G̃. All three steps translate to simple and ef-
ficient GPU operations (cf. Section 4.5), which can be executed in
parallel for all deformation points.

4.3 Inverse Mapping

The mapping from the initial point distribution G to the deformed
distribution G̃ encodes the deformation. However, the deforma-
tion function g(x) is only explicitly defined for distinct points
g(gi) = g̃i, but in fact we need the inverse deformation x = g−1(y)
in order to evaluate the shading function at arbitrary points y on
the surface. This inverse deformation can be approximated by a
weighted average:

x = g−1(y) ≈∑
i

wgauss(|y− g̃i|)
(
gi + R̃−1

i (y− g̃i)
)
, (5)

where the weight function wgauss generates a Gaussian fall-off that
sums to 1. The rotation matrices R̃i describe the rotation that each
deformation point g̃i underwent in relation to its undeformed state
(see Müller et al. [2005]). It can be computed for each g̃i from the
neighboring Ndist deformation points.

This approximation of the inverse deformation function can be
evaluated efficiently for all the visible pixels in the scene with a
splatting-based approach that is accelerated on the GPU. At each
deformed point g̃i, a splat is drawn. The first term from Eq. (5),
the scalar Gaussian fall-off, is encoded in the alpha-channel and
the second (positional) term is encoded in the RGB channels of the
splat (evaluated in a fragment shader). At each visible location y,
the point splats of the nearby deformed points will overlap y. We
blend them together based on their respective alpha-values, which
effectively evaluates x according to Eq. (5) at every location y. The
result can simply be read from the framebuffer. This method is

very efficient, and the complexity is only linear with the number of
deformation points.

4.4 Hierarchical Solution

In contrast to surface deformation methods that create a spatially
smooth deformation, our on-surface deformations are only piece-
wise spatially smooth. For instance, when a shadow is dragged over
an edge, such as in Fig. 3, the deformation g(x) is highly discon-
tinuous at the edge (although the shading result might look smooth
on the surface). To capture such discontinuities, a high number of
deformation points is required. However, a system with many de-
formation points converges too slowly for interactive applications.
To this end, we use a hierarchical relaxation approach (as used in
parametrization [Schreiner et al. 2004]).

Analogous to the non-hierarchical approach described before, we
first compute a set of undeformed points with a minimal distance
of rM , again denoted as G. From this point set we create the
deformation hierarchy: we start by choosing a subset of points
from G with a minimum distance of r0 yielding the coarsest level
H0 = {h0,i|h0,i ∈ S ∧ 0 ≤ i < N0}. The selection works as fol-
lows: we randomly select a point g ∈ G, add it to H0, and flag
all points in G within a distance of r0 from g (including g itself)
as visited. This is repeated until all points are visited in G. To
obtain the respective next finer hierarchy level, H j, j > 0, we half
the minimal distance from the previous level, i.e. r j = r0/2 j. The
hierarchical meshless deformation requires that coarse point sets
are included in finer ones, i.e. H0 ⊂ H1 ⊂ ... ⊂ HM (see Fig. 4),
and consequently we first select all points g ∈ H j−1 from G, and
thereafter continue with the random selection as described above.
Note that the minimal distance rM defines the editing granularity
where small values allow more detailed on-surface deformations.
The distance r0 implicitly determines the number of hierarchy lev-
els l = blog2(r0/rM)c. In our examples we chose approximately
5% of the scene extent for r0, and rM is chosen such that a sufficient
resolution at the finest level is obtained. This leads to 5 or 6 levels
in practice.

H0 H1\H0 H2\H1

Figure 4: Blue noise properties: Left: every deformation point
has on average 6 direct neighbors (and 18 in total within twice the
distance), Right: multiple levels (red to white) of a deformation
hierarchy with blue noise properties in and between levels.

When solving for the mapping function, we start by computing the
solution for the coarser (and smaller) sets of deformation points
first, and then continue with the respective next finer one. Con-
sequently, we need to transfer the deformation from coarser to
finer point sets after each intermediate solution. To do this, we
first express every undeformed point h j,i ∈ H j\H j−1 relative to
the coarser undeformed points in H j−1 using the difference vectors
d j,i = h j,i − h j−1,i.

After optimization of the coarse set of points H j−1 (yielding H̃ j−1),
we transfer the solution as an initial solution to the next finer level
H̃ j. To this end, we estimate the initial new positions of points in
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H̃ j as a weighted average of their relative locations:

h̃ j,i =
N j−1

∑
k=0

w j,k(h̃ j−1,k + R̃ j−1,k · d j,k), (6)

where the weights w j,k are the inverse magnitudes of the difference
vectors (normalized to 1). Note that we apply the rotation R̃ j−1,k ,
which the point h̃ j−1,k underwent during deformation, to the dif-
ference vector d j,k. This is required, if rotational movement was
present on the coarser level.

The solution for H̃ j−1 serves as a starting point for H̃ j, but also as
a constraint: in subsequent iterations, the deformation points com-
puted in H̃ j−1 are treated as fixed and do not move anymore.

In order to allow the user to set constraints at the finest level, we
perform a V-cycle, similar to multigrid methods [Trottenberg et al.
2000]. We start at the finest level HM , perform a few relaxation
steps, and then proceed to the next coarser level. We continue it-
erating until we have reached the coarsest level H0. We then fully
relax the coarsest level, and go back up to the finest level, as initially
described above.

4.5 GPU Implementation

Deformation Estimation The simplicity of our hierarchical de-
formation estimation approach allows for an efficient parallel im-
plementation on a graphics processor. The hierarchical deformation
estimation part of the pipeline was implemented with CUDA be-
cause of its flexible memory management. The deformation points,
connectivity information, and other constants, like w j,k and d j,k
used in Eq. (6), are precomputed on the CPU and are uploaded to
GPU memory. We then relax all three parts of Eq. (4) in parallel for
all deformation points, starting with enforcing the user constraints.

The three relaxation steps are repeated a number of times for
each deformation point from all levels (we used 10 V-cycles in all
our experiments). Afterwards, we calculate the inverse mapping
x = g−1(y) for each pixel using a vertex and a fragment shader, as
outlined in Section 4.3.

Surface Projection To relax Esurf, we need to find the closest
on-surface point for any location in the scene. To find this point
efficiently, we use a discrete offset volume, which maps every lo-
cation of a voxel center to the closest on-surface point. We build
this offset volume in a preprocessing step and upload it to the GPU,
where it is fetched using linear filtering.

Only voxels that are within close range to a surface are required by
our algorithm, as the deformation points stay close to the surface
during optimization. Thus, we have to calculate the closest on-
surface point only for voxels that lie in regions close to a surface.
This reduces the computation time of our pre-processing algorithm.
It takes less than 10 seconds on a current CPU to generate a 2563

volume for a typical scene. The required voxels are stored in a hier-
archical data structure on the GPU. Therefore, even large volumes
of up to 10243 typically require less than 20 MB of GPU memory.

In meshes with open boundaries, we achieve the most intuitive
handling by extending the open edges into space. If the closest
on-surface point for a particular voxel center is located on an open
triangle edge, we replace this on-surface point with the closest point
in space that is coplanar to the triangle vertices. This allows defor-
mation points to float off the surface.

Per-Pixel Surface Projection As a last step in our pipeline, each
location x is projected onto the closest surface using the discrete
offset volume in a fragment shader. This step is always performed
before evaluating the shading f (x) to ensure that x matches the sur-
face with per-pixel accuracy.

4.6 Animated Scenes

In general, our approach does support animated scenes, but there
are a number of different cases to consider. Animating an object
that casts a shadow, creates a caustic, or reflects indirect illumina-
tion requires no explicit consideration. It only means that the shad-
ing at locations x changes over time. However, our implementation
does currently not support edits of signals on animated surfaces.
Camera animations do not cause any problems. We simply keep
the solution for the deformation field that was initially computed
and only re-evaluate the inverse lookup at each screen pixel. We
also allow key-framed signal deformations. For instance, the user
can animate how a 3D texture deforms over an object by setting
key-framed target positions for constraints.

5 Results

Our approach allows us to interactively edit a number of different
visual phenomena on surfaces. In this section we briefly outline
each application separately; a combination of all four applications
is seen in Fig. 1. Additional results can be found in the supplemen-
tal video.

Shadows The editing of shadows is the primary application of
our technique (although other on-surface signals can be deformed
equally well). Fig. 8 shows shadow editing for highly complex ge-
ometry and models with high genus, for which editing the shadows
manually, e.g. with image processing, would be a tedious task.
With our system, all shown modifications can be specified using
few mouse clicks, and the results can be observed at interactive
frame rates.

Reflections and Refractions Fig. 1 shows that our system can
even edit reflections to a certain degree. In this case, we apply the
rotational component of Eq. (5) to the normals to ensure a consis-
tent reflection vector. Note, however, that the modifications are not
as general as the ones proposed by Ritschel et al. [2009], as we do
not support direct editing of surface normals (and hence reflection
directions).

Solid Textures 3D textures are a powerful tool to add surface
color or detail to objects that are difficult to parametrize. However,
control of their placement by changing a global or spatially varying
transformation will almost always result in a change of visible sur-
face texture, as the slice through the 3D texture changes. Using our
technique, the pattern can be deformed on-surface without changing
the pattern as shown in Fig. 5 and the accompanying video.

Figure 5: Deforming a 3D texture on a rock using on-surface defor-
mations preserves the structure of the texture, whereas conventional
space deformation results in unpredictable changes of the visible
texture (7.8 fps, 10 k deformation points).

Caustics and Diffuse Bounces Our method also generalizes to
indirect illumination, which allows us to interactively modify and
deform it. Note, that our approach is independent of the method
producing the indirect illumination, as is the case for all other mod-
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ifiable shading components. Fig. 6 shows a scene rendered with
Instant Radiosity for indirect illumination. We use our method to
drag the indirect shadow of the fork lift from beneath to the floor
in front of it. The modification only affects indirect illumination,
all other lighting effects remain unchanged. Analogously, we can
reposition and deform a caustic of a metal ring, see Fig. 7. Note that
the smooth deformation due to our approach prevents objectionable
artifacts in the high frequency details of the caustic.

Figure 6: This example demonstrates editing of indirect light: the
shadow from underneath the fork lift is pulled towards the front
(5.4 fps, 4 k deformation points).

Sketching Shadows, Reflections, Caustics The user con-
straints for on-surface deformation can also be set by using the
sketching interface, where our system automatically creates a defor-
mation from two user-specified curves, such that one curve deforms
to another one. Sketching can be used to intuitively edit on-surface
signals in many scenarios, such as the caustics in Fig. 7.

Figure 7: Starting from a caustic (left), a user sketches a source
and target curves on the shading signal (middle), and the system
computes the new shape (right) (10.3 fps, 1 k deformation points).

Complex Topology Our method efficiently handles geometri-
cally complex scenes. The preprocessing, including the compu-
tation of the offset field, required for the scene in Fig. 8, left, which
consists of 1.4 million triangles, takes only 23 seconds (10 s for the
offset volume, and 13 s to generate 19 k deformation points). As
our method works in a meshless fashion, it naturally handles scenes
with low, medium and high genus (Fig. 8).

5.1 Performance

Performance numbers are indicated underneath each example edit.
As can be seen, our method allows for interactive edits (measured
on a GeForce 8800 GTX). Our GPU implementation of the solver
is about 10 times faster than a pure CPU implementation and was
key to achieve interactivity.

5.2 User Study

In order to evaluate the usability of our system for a particular
editing task, a user study with 16 participants was conducted. All
16 participants had not used our system before. Most of them
considered themselves skilled computer users in general (average
of 8.2 ± 1.2 where 0 is worst and 10 is best, and ± denotes the
standard deviation) and about half of them also had some experi-

ence with professional 3D modeling and animation packages (aver-
age of 4.4 ± 3). First, the participants received a short tutorial on
our system, which took them on average 4:32 ± 1:17 (min:sec) to
complete. Afterwards, they were asked to complete four tasks on
their own for four different shading components: shadows, caustics,
reflections, and 3D textures. The tasks were given by a textual
description as well as before/after images (see the supplemental
material). All of the participants found the tasks easy to solve with
our system and completed them in a very short time (on average
1:06 ± 0:33, 1:27 ± 0:57, 1:06 ± 1:10, and 1:02 ± 0:36 (min:sec),
for the shadow, caustic, reflection, and 3D texture editing task, re-
spectively). Furthermore, the participants were very satisfied with
the achieved results (average of 8.6 ± 1.8 over all tasks, where 0
is worst and 10 is best) and found the system extremely useful to
achieve the requested task (average of 9.3± 1.3 over all tasks). An
exact description on how the user study was conducted and more
details on the results can be found in the supplemental material to
this paper.

6 Discussion and Limitations

Our editing metaphor is based on a virtual piece of cloth that is de-
formed over the scene surface. We reason that users have a certain
expectation or knowledge of how a piece of cloth would behave
when deformed over a surface and our objective function is cho-
sen accordingly. As a result, our deformations are not as-rigid-as-
possible (ARAP) [Alexa et al. 2000], i. e., our solution may contain
some shearing, as it does not explicitly prefer rotations. We have
experimented with an ARAP objective function as well; however,
we found that the resulting deformations tend not to be that different
from our results, but more expensive to compute. Furthermore, a
user can easily enforce curved deformations without shearing by
using the sketching interface to map a straight line onto a curve.

The deformation function g(x) should be invertible in order to
find undeformed locations x for any surface point y. However,
the computed deformation function may not be strictly invertible.
For instance, under very strong deformations, foldovers may occur.
Adding more constraints can prevent this.

Our method does currently not support signal deformation on ani-
mated surfaces. It might be possible to use a temporally consistent
parameterization over the animated surfaces that allows applying
a deformation over time. However, this extension as well as an
intuitive user interface to perform such edits remains future work.

Our system does not prevent the user from performing objection-
able edits that might be perceived as physically incorrect (as can be
observed in the sphere example shown in the supplemental video at
around 1:00 min:sec). Especially smooth surfaces (e. g., a plane) or
simple signals (e. g., a sphere’s shadow) can lead to objectionable
edits.

We have chosen on-surface deformations as our editing paradigm.
It has proven to be intuitive (cf. Section 5.2), interactive, and gen-
erally applicable. It also prevents artifacts that would occur with
space deformations (see Fig. 3c). The different shading components
can be decoupled, enabling a workflow that artists are used to (i. e.,
layer-based editing).

An interesting extension of our system would be to allow the de-
formation of a shading effect to relate only to a certain object. For
instance, if two objects cast a shadow onto the same location, an
artist might want to edit only the shadow of one object. To enable
such a feature, our system could be easily extended to hold a defor-
mation field per object.

Another possible extension would be to support locally varying
weights wdist in Eq. (4) that depend on the local value of the shading
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Figure 8: Left: Statue with 1.4M faces (genus 8, 8.1 fps, 19 k deformation points). Right: A scene with several 100 k faces with a high genus
broken topology (hundreds of disconnected components). It can be edited at 7.3 fps (21K deformation points), and would be impossible to do
in image space.

function. E.g., for a shadow editing task it could be useful to keep
the shadow area more rigid and to allow the illuminated area to
deform more.

Our editing metaphor is focused on on-surface signal deformations,
i.e., we are interested in edits such as deforming cast shadows or
caustics. Other edits, such as changing the hue of indirect illumina-
tion, are orthogonal to our method.

7 Conclusion

We have presented an interactive system for the artistic deforma-
tion of shading components such as shadows, caustics, and indirect
illumination, directly over surfaces. Our main editing metaphor is
that of a virtual piece of cloth modified by constraints. The system
has an intuitive user interfaces to set these constraints. The con-
straints are solved on the GPU at interactive rates, which allows for
an interactive workflow. We have chosen a meshless approach in
order to support the deformation of surface signals across separate
objects and across objects with difficult topologies. A number of
challenging scenes were presented, where we have modified shad-
ows, caustics, reflections, 3D texture, and indirect illumination. We
further demonstrated the effectiveness of our system with a user
study of task performance.

In future work, we would like to add higher-level constraints to
allow for more general deformation fields. While we have focused
on deformations of surface signals, it would be worthwhile to ex-
plore other modifications, such as intensity changes. Our technique
could possibly be extended to higher-dimensional (4D) editing of
light transport. Furthermore, we would like to investigate how to
best handle animations that exhibit topology changes.
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